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Abstract 

This paper investigates the nonlinear dynamics of a capacitive electret-based capacitive 

energy harvester, focusing on solving the governing equations using semi-analytical methods, 

particularly the method of multiple scales (MMS). The harvester features a cantilever micro-

beam above an electret layer, where surface voltage induces nonlinear electrostatic forces. 

These forces are simplified using a third-order Taylor expansion to reduce complexity while 

preserving key nonlinear characteristics. The Galerkin method is used to discretize the 

governing equations, transforming them into ordinary differential equations based on the 

system's mode shapes. The method of multiple scales (MMS) is then applied to these reduced 

equations to obtain approximate analytical solutions for the system’s dynamic response. A 

comparison between the simplified and original equations confirms the simplified model’s 

accuracy. The study highlights the value of advanced nonlinear analysis in enhancing the 

performance of capacitive energy harvesters and proposes a robust framework for their 

optimization using these combined methods. 
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1. Introduction 

The field of energy harvesting, especially from mechanical vibrations, has gained considera-

ble attention due to its potential in powering micro-electro-mechanical systems (MEMS) and wire-

less sensor networks (WSNs). Among the various energy harvesting mechanisms, electret-based 

capacitive harvesters stand out due to their longevity and low energy consumption. These systems 

employ electrets, which are dielectric materials capable of retaining electric charges over long peri-

ods, making them ideal for harvesting low-frequency environmental vibrations [1-2]. 

In recent years, there has been growing interest in exploiting nonlinear dynamics to enhance 

the efficiency of these systems. Nonlinear energy harvesters have been shown to offer a broader 
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operational bandwidth compared to their linear counterparts, making them more effective in envi-

ronments where the vibration frequency varies [3]. Techniques such as hardening and softening 

spring effects allow for a wider resonant frequency range, improving the system's ability to capture 

energy from a broader spectrum of vibrations. However, this nonlinear behavior introduces com-

plexities in modeling and analysis, which requires robust analytical methods to accurately predict 

and optimize system performance. 

This study focuses on the nonlinear dynamics of an electret-based capacitive energy harvester, 

employing semi-analytical techniques such as the method of multiple scales and Galerkin discreti-

zation. The aim is to provide a deeper understanding of the system's dynamic behavior and offer a 

framework for optimizing its performance. By simplifying the electrostatic forces using a third-

order Taylor expansion, the complexity of the governing equations is reduced without losing critical 

dynamic features. The combined approach of nonlinear modeling and semi-analytical methods of-

fers valuable insights into improving the efficiency and reliability of capacitive energy harvesters. 

2. System characterization and analytical modeling 

As illustrated in Fig. 1., the energy harvester system under study consists of a cantilever beam 

positioned on a fixed substrate, which is coated with an electret layer. The cantilever beam func-

tions as the movable electrode of a variable-capacitance capacitor, forming the basis of the electro-

static energy harvesting method. The beam used in the system has a length L, thickness h, and width 

b. The electret layer on the fixed underlying surface is designed to generate the required voltage for 

harvesting environmental energy, thereby eliminating the need for any external electric charge in-

jection into the capacitor's electrodes. Electret layer, characterized by a surface voltage of Vs, a 

thickness of te, and a relative permittivity of εe, is situated between the lower electrode and the can-

tilever beam. 

The modeling of the system is divided into two components: mechanical modeling and elec-

trical modeling. To model the mechanical aspect of the system, we employ Hamilton's principle: 
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where, K, U and W represent the kinetic energy, potential energy, and work done by external forc-

es, respectively. The potential energy of the system comprises both strain energy and electrostatic 

potential energy. Given the absence of external forces, the last term in Hamilton's equation reduces 

to zero:   
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In the above equations,  is the mass density of the beam, A is the cross-sectional area, Zb is the 

base excitation and W is the deflection of beam. Furthermore, for each of the potential energy 

terms, we have: 
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Figure 1. Schematic of eletret-based energy harvester 
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where, E is Young’s modulus, I is the moment of inertia of the beam, Q denotes the induced electric 

charge on the upper electrode, while Ceq signifies the equivalent capacitance of the system. This 

equivalent capacitance is the result of combining two series capacitances: the capacitance of the 

electret layer and the variable capacitance. To calculate the equivalent capacitance of the capacitor, 

considering the capacitance of the electret, we use the following equation from [4]: 
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By calculating the variation of kinetic and potential energy and substituting them into Hamil-

ton's principle, while considering the fundamental principle of calculus of variations, the governing 

equation for the mechanical part of the system and the corresponding boundary conditions are ob-

tained as follows: 
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 (6) 

To derive the governing equation for the electrical part of the system (Fig. 2.), we utilize 

Kirchhoff's rule and consider the equivalent electrical model of the electret as provided in the litera-

ture . The equation is given by: 

 0   ;  i = s

eq

Q dQ
Ri V

C dt
    (7) 

where R is resistance. 

; sin( )b bz Z t  

bz  
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Figure 2. Equivalent electrical model of the energy harvester 

Eqs. (5) and (7). are, in fact, the governing equations for the system's dynamics. To analyze 

the system's behavior, we first non-dimensionalize the equations using the following variables, 

which simplifies the analysis and allows for a more generalized understanding of the system's be-

havior across different scales: 
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After substituting the defined variables for non-dimensionalization and performing the necessary 

simplifications, we arrive at the following equations (the tilde symbol has been removed for sim-

plicity).  
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In the next step, we will further simplify the equations using a Taylor expansion and then pro-

ceed to analyze the problem using the method of multiple time scales. 

3. Solution strategy 

As reviewed in the literature, two approaches can be considered for addressing the problem of 

electrostatic energy harvesters. The first method involves multiplying both sides of the first equa-

tion of the system Eq. (9). by 
2

2( )W   and then numerically solving the governing equations of 

the system, as done in [5]. This method, however, has significant computational drawbacks, includ-

ing high computational cost and potential inaccuracies due to numerical approximations. The next 

C(t) 
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method involves writing a Taylor series expansion for the electrostatic force in the equation and 

then applying semi-analytical solution methods, as performed in this paper. 

3.1 Taylor expansion 
To perform the Taylor series expansion, given that the beam's vibrations are small, the inte-

gral expression in the governing differential equations of the system will be represented as a poly-

nomial. Given that in vibratory energy harvesters the excitation frequency is typically near the first 

natural frequency and seldom approaches higher mode frequencies, for MEMS harvesters, where 

resonance frequencies are significantly higher than environmental vibration frequencies, a single-

mode response is sufficient for the analysis [6]. Assuming: 

 ( , ) ( ) ( )W x t t x   (11) 

where ( )x is the first mode shape of cantilever beam [7]. Now, by substituting Eq. (12). into Eq. 

(9)., one obtains: 

 2 3

0 1 2 3

20

L
dx

A A A A
W

     
   (12) 

Furthermore, the nonlinear terms present in the equations can be expressed as the following poly-

nomial expressions: 
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The governing differential equations of the system now take the following form: 
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3.2 Galerkin decomposition method 

After expanding the nonlinear terms in the equation, we now apply the Galerkin decomposi-

tion method to transform the equations into ordinary differential equations (ODEs): 
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3.3 Analytical solution 
Since the presence of the electret in the system generates an electrostatic force, the static equi-

librium position of the beam is not at 0  . To use analytical methods, we need to separate the 

dynamic and static responses of the system, which can be expressed by the following relationships: 
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After substituting Eq. (17). into the governing equations of the system, the static equilibrium point 

of the system can be calculated. After substituting the equilibrium point values into the governing 

equations of the system and performing simplifications, we arrive at the following equations. Each 

coefficient is expressed as a function of the system parameters and has been written in this form to 

simplify the equations. 
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The multiple scales perturbation method is applied to derive an analytical solution for the ob-

tained equations [8]. To achieve this, the following assumptions are taken into account: 
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by substituting Eq. (22). in Eq. (21). and removing the hat notation for brevity, one obtains:  
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By introducing new independent variables accordingly as   ;  n = 0,1, ...n

nT t  The deriva-

tives with respect to t can then be expressed as a series of partial derivatives with respect to Tn . The 

solution can be represented by expanding u and q as is done in the references [8]. 

Because the excitation is of order 2( )O  , for consistency, 0  must also be 2( )O  . Hence, the 

detuning parameter  is defined as 2

0     . By substituting expanded u and q into Eq. (20). 

and then matching the coefficients of identical powers of  , the following sets of equations are de-

rived: 
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The solution of Eqs. (22a) and (22b). can be written as: 
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After substituting Eq. (25). into Eqs. (23a) and (23b). and eliminating secular terms: 
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Now by substituting Eqs. (26) and (25). into Eq. (24a)., The secular terms will be eliminated 

if: 
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Representing A in polar form: 
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Substituting into Eq. (27). and then separating the real and imaginary components one obtains: 
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To make the system autonomous, the 
2T    , change of variable can be used. By setting 

0a    ,the frequency response for the steady-state motions can be determined as follows: 
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4. Conclusions 

To verify the accuracy of the equations and assess whether the Taylor expansion alters the 

system's dynamics, we analyzed the free vibration response of the system by considering the pa-

rameters {}. As shown in Fig. 3a., the system gradually approaches its static equilibrium point after 

a certain period of time. This indicates that the mechanical energy generated within the system, due 

to the initial condition (1, ) 0.15W t  . is eventually converted into electrical energy and dissipated 

through the resistor R. From Fig. 3., it is evident that the third-order Taylor expansion does not sig-

nificantly affect the system's dynamics 

 

  

 

 

 

  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

Figure 3. (a) Comparison of the System Dynamics After Applying the Taylor Expansion. (b) Phase portrait. (c) cur-

rent. (d) Output power 
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Based on Fig. 4a., it can be observed that as the resistance R decreases, the system exhibits 

nonlinear behavior. This can be explained by the fact that reducing R increases the coefficient of the 

nonlinear term in the governing differential equations of the system. Furthermore, from the graphs 

in Fig. 4b., it is evident that an increase in the surface voltage of the electret layer leads to a rise in 

the system’s resonant frequency, making the system stiffer. Additionally, Fig. 4c. clearly demon-

strates that as the amplitude of the external excitation increases, the amplitude of the system's vibra-

tions also increases. 
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Figure 4. (a) amplitude frequency response(VS=180v). (b amplitude frequency response(R=100 M ). (c) amplitude 

frequency response(VS=180v and R=100 M ). 
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