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Abstract 

This study presents a nonlinear dynamic analysis of a rotor-disk-bearing system consisting of 

a flexible continuous rotor supported by two flexible bearings. The rotor incorporates rigid 

disks positioned equidistantly with zero phase difference. Both linear and nonlinear charac-

teristics of the bearings are considered. The system's governing equations are derived using 

Hamilton's principle, treating the rotor as an Euler-Bernoulli beam to obtain partial differen-

tial equations. Mode shapes of a rotating beam on two springs are employed to discretize the 

equations via Galerkin's method, yielding ordinary differential equations. Multiple scales 

analysis is applied to solve the equations analytically and investigate the effects of various 

parameters such as linear and nonlinear bearing stiffness coefficients on stability. Frequency 

response curves are generated to analyze dynamic behavior. Numerical integration using the 

Runge-Kutta method validates the analytical solutions and excellent agreement is observed. 

The analyses provide insights on system behavior under flexible bearing support incorporat-

ing nonlinear dynamics. 

Keywords: Rotating systems; multiple scales method ; flexible bearings; stationary analysis .  

1. Introduction 

Rotating systems are employed in various industries, including power plant turbines, automo-

tive and manufacturing. These machines typically feature a moving part known as a turbine. With 

industrial advancements and increased rotational speeds of these machines, studying the dynamic 

and vibrational behavior of these systems has become increasingly important. 

Rotating systems are modeled in various forms and have different characteristics. for instance, 

in different loading conditions, Fadatari et al. [1] investigated the effects of an axial load under dif-

ferent excitation frequencies and unbalanced mass eccentricity, while Moradi et al. [2] examined 
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the influence of gravitational forces on the system's dynamic behavior. Sadooghi et al. [3] studied a 

rotor-disk system with bearings under stationary conditions. 

Bearings are a crucial component in dynamic analysis of rotating systems, and they come in 

various types. Jain et al. [4] conducted mathematical modeling  of bearings in rotating systems, con-

sidering factors such as radial clearance and the number of balls. Liang et al. [5] examined the ef-

fect of roller bearing parameters on the nonlinear dynamics of offset rotors. in practice, bearings 

exhibit nonlinear stiffness and damping properties. to assess the impact of nonlinear stiffness and 

damping, as well as to compare linear and nonlinear stiffness and damping in frequency response 

and force transmission, Caiyer et al. [6] proposed a model for evaluating these coefficients. 

Zhang et al. [7] derived the equations of motion for a system with third-order nonlinear stiff-

ness and clearance using Lagrange's equations, employing harmonic balance and Runge-Kutta 

methods to solve the dynamic response. To examine the primary resonance of a shaft with simple 

supports and large vibration amplitudes, a shaft with distributed mass can be considered [8]. 

Guanzhou et al. [9] studied the characteristics of combination and primary resonance in a du-

al-rotor system under simultaneous impact with the bearing between the shafts. In this study, the 

simultaneous impact of the shaft with the third bearing, considering the nonlinear complexities of 

the bearings, was analyzed. Shahgoli et al. [10] analyzed the primary frequency of a symmetric ro-

tating system without a disk, where the shaft includes stretching nonlinearity, and validated the re-

sults using the multiple scales method. Rui et al. [11] investigated the dynamic behavior of a two-

degree-of-freedom rotating system with an outer ring defect at subharmonic frequencies.  

Alishverichi et al. [12] studied the dynamic response of a 2DOF system excited by a non-ideal 

exciter, where the system vibrates near the first critical speed. 

In some cases, instead of using a conventional disk, a disk reinforced with graphene nano-

platelets or two conventional disks bolted together are used. this approach significantly reduces the 

system's vibration amplitude at various points [13].  

Numerous studies have been conducted on the stability and nonlinear vibration analysis of ro-

tor systems with flexible/rigid blades [14]. Some studies develop a nonlinear time-dependent model 

of the blade-rotor-bearing system using Lagrange's equation [15], where wires are used to connect 

the blades to reduce the system's vibration amplitude at resonance frequencies [16]. Linear and non-

linear supports are also used to model bearings in rotor-blade-bearing systems, which affect the 

system's dynamic response [17]. 

In this paper, a rotor-disk-bearing system with two disks positioned equidistantly and with ze-

ro-degree phase difference is studied, where the shaft exhibits significant elastic deformation under 

bending, necessitating the inclusion of geometric nonlinearities in the shaft modeling. The shaft is 

supported by flexible bearings, modeled as an equivalent spring-damper system with linear and 

nonlinear stiffness elements. The equations of motion for the rotating system, which include a flexi-

ble shaft, rigid disk, and flexible bearing, are derived using the extended  Hamilton's principle. The 

shaft is assumed to be an Euler-Bernoulli beam, thus ignoring shear deformation and rotary inertia. 

The resulting equations are solved analytically using the method of multiple scales and numerically, 

with the results compared. The findings demonstrate a strong agreement between the two methods. 

2. Mathematical modeling 

       To derive the dynamic equations of motion, the kinetic and potential energy of the system 

components and work of non-conservative forces must first be calculated [1]. these extracted ener-

gies are then substituted into Hamilton's equation to obtain the partial differential equations. 

 

      (1) 
0

( ) 0

t

total total ncT U W dt − + =  
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Figure 1. schematic diagram of the system 

After deriving the kinetic energies of the shaft, disks and unbalanced masses, as well as poten-

tial energies of the shaft and bearings, the equations of motion in the y and z directions  are obtained 

using the extended Hamilton's principle. 
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        Equations (2) and (3) represent the equations of motion for the system. to solve these equa-

tions, they must first be discretized using the Galerkin method. then, the resulting ordinary differen-

tial equations are then solved using numerical and analytical methods, such as the multiple scales 

method, to analyze the dynamic and vibrational behavior of the system under different conditions. 

 

 

Figure 2. The mode shapes of the beam on rigid and flexible bearings 
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In Figure 2, the mode shapes of the beam for both elastic and rigid supports are illustrated. 

The beam on spring supports at both ends begins to oscillate from a value greater than zero in the 

first three modes, whereas for rigid supports, the starting and ending points of the beam are always 

zero[1]. To solve equations (2) and (3), which are the partial differential equations, we first need to 

transform them into ordinary differential equations using the first mode shape of the beam with two 

end spring supports. this is achieved using the Galerkin method. here, we will only use the first 

mode of the beam for discretizing the equations with the Galerkin method, as the first critical speed 

is crucial in designing and analyzing rotating systems. to accomplish this, ( ) ( )v V t x= and 

( ) ( )w W t x= were substituted into the previous equations and then discretize them using the or-

thogonality property of the mode shapes. thus, the ordinary differential equations are obtained as 

below: 

    (4) 2 3

1 2 4 1 2sin( ) sin( )w Cw k v k w v w k w t t+ +  + − − =   +   

     (5) 2 3

1 2 4 1 2cos( ) cos( )v Cv k w k v w v k v t t+ −  + − − =   +   

        Equations (4) and (5) represent the system's equations of motion in the y and z directions, 

which were obtained after applying the Galerkin method and are now expressed solely in the time 

domain. The constants used in the above equations are obtained through the following relationships: 
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3.  Perturbation technique: Method of multiple scales 

After determining the constants, the method of multiple scales is employed to solve equations 

(4) and (5) In this approach, the responses of the system in both vibrational directions are consid-

ered as functions of time and epsilon, where epsilon is a very small perturbation parameter [18]. 

 

(7) 
0 0 1 1 0 1( , ) ( , ) ( , )V t V T T V T T  +  

  (8) 0 0 1 1 0 1( , ) ( , ) ( , )W t W T T W T T  +  
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As mentioned, to solve the differential equations (4) and (5), V and W are considered as poly-

nomials in terms of T0 and T1, and substituted into the differential equations. Since the equations are 

of second order, and the first and second derivatives of V and W are required, the following rela-

tionships are used for these derivatives[18]: 

(9) 

 

(10) 
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        In the method of multiple scales, the system must be weakly nonlinear, meaning this method is 

applicable for weak nonlinearities. Since the imbalance is small compared to the diameter of the 

shaft, the nonlinear coefficients are small, and the method of multiple scales can be used. for this 

purpose, the values of C, μ, k4, Λ1, and Λ2 are replaced with ϵC, ϵμ, ϵk4, ϵΛ1, and ϵΛ2, respective-

ly[1]. by considering the above expressions and and substituting expressions (7) to (11) into the 

differential equations (4) and (5), terms with coefficients ϵ0 and ϵ1 are obtained. 

 

System of order zero equations (ϵ0): 

(12) 
2

0 0 2 1 0 0 2 0 0D W k D V k W− + =  

(13) 
2

0 0 2 1 0 0 2 0 0D V k D W k V− + =  

System of order one equations (ϵ1): 
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         The homogeneous solution of equations (12) and (13) are provided in [1].By substituting the 

homogeneous solutions into equations (12) and (13) and then solving the quadratic equations for βf 

and βb, the linear natural frequencies of the forward and backward modes are obtained: 

 
 

(16) 
2 2

, 1 1 2

1
( 4 )

2
f b k k k =    +   

 

        To analyze the stability of the system in the steady-state condition, we set the angular velocity 

of the excitation of the unbalanced mass near the system’s natural precession frequency, Ω = βf + 

εσ. since, in primary resonance, only forward frequency is excited [8]; now, by substituting the ho-

mogeneous solutions of equations (12) and (13) in to the right-hand side of equations (14) and (15), 

we identify the terms that have the coefficient 0f T i
e


. then, by setting the coefficients of 0f T i
e


 and 

0bT i
e


 to zero, and assuming 
1

2
ni

n nA a e


=  and 1 1T = − + , and separating the real and imaginary 

parts of the equations and may set up, 1 0a = , 2 0a = , 1 0 = and 2 0 =  to obtain the steady-state 

response, an implicit equation in terms of the tuning frequency and amplitude obtained: 
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4. Results and discussion 

After solving the implicit equation obtained from the method of multiple scales and numeri-

cally solving equations (4) and (5) using the Runge-Kutta method. Figure 3(right) illustrates the 

Campbell diagram of the rotating system. In rotating systems, due to the presence of gyroscopic 

forces, the natural frequency of the system is not constant and varies with the rotational speed. This 

diagram is plotted using equation (16), showing the forward and backward frequencies as a function 

of the system’s rotational speed. The greater the linear stiffness, the higher the value of βf, meaning 

the system will resonate at higher frequencies. Figure 3(left) shows that due to the presence of non-

linear stiffness in the bearing, the frequency response of the beam with both ends supported by 

springs shifts to the right, and the oscillation amplitude decreases. according to this chart, nonlinear 

stiffness in the bearing has a significant effect on the frequency response curve. the greater the non-

linear stiffness, the more the curve bends to the right, indicating the hardening effect of the system 

[1]. the nonlinear stiffness does not affect the natural frequency and critical speed of the system by 

solving equation (17), the system’s frequency response is obtained, and by using the Jacobian ma-

trix and the sign of the determinant's eigenvalues, the stable and unstable points can be identified 

[19]. in some areas, this diagram has three solutions: one trivial solution, one non-trivial unstable 

solution, and one larger stable solution. all the physical and geometric properties of the system are 

listed in Table 1. 

Table 1. Parameters of the system 

Parameters Values Parameters Values 
Shaft length (l) 1(m) Modulus of elasticity (E) 200(GPa) 

Shaft radius (R) 0.02(m) Viscous damping (c) 10(Ns/m) 

Disk radius (Rd) 0.07(m) Linear bearing stiffness (kl ) 9×105(N/m) 

Disk thickness (h) 0.015(m) Nonlinear bearing stiffness (knl) 2×109(N/m) 

Unbalance mass (Mud) 0.015(kg) Density ( ) 7800(kg/ ) 

 

 

Figure 3. Frequency response curve for different values of bearing nonlinear stiffness(left) and campbell 

diagram(right) 
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Given that the shaft is modeled as a beam with both ends supported by springs, and the mode 

shape of this beam has been used for discretizing the equations via the Galerkin method, all the re-

sults are based on this mode shape. however, in Figure 4, the mode shape of a simply supported 

beam sin(nπx/l) is used, and the frequency response is compared with the model of the beam with 

both ends supported by springs. at some frequencies, the method of multiple scales has been vali-

dated against the numerical method, which also applies to the simply supported beam mode shape. 

Figure 5 shows the frequency response of the system, validated with four points using numerical 

methods. Points A1, A2, and A4 are obtained with the initial condition V(0)=6×10-6, while point A3 

is obtained with the initial condition V(0)=6×10-2. The presence of geometric nonlinearity in the 

shaft modeling leads to a jump phenomenon in the frequency response curve. this phenomenon may 

occur at certain points known as bifurcation points. for instance, at point A3 where the system oscil-

lates at a specific tuning frequency, a slight increase in rotational frequency does not increase the 

amplitude as predicted by the curve; instead, the system’s oscillation amplitude suddenly drops to a 

lower stable value (A4).  

 

Figure 4. frequency response curves for flexible and rigid bearings 

 

Figure 5.  frequency response curve with different initial conditions 
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5. Conclusion 

       In this study, a nonlinear dynamic analysis of a rotor-disk-bearing system was conducted to 

investigate the impact of bearing flexibility and stiffness nonlinearity. The shaft was modeled as an 

Euler-Bernoulli beam supported by two springs representing the bearings. Analytical and numerical 

solution techniques were employed to fully characterize the system's dynamic behavior. The critical 

speed were found to differ depending on whether the shaft was modeled as simply supported or a 

beam on springs. Introducing bearing stiffness into the model lowered the system frequencies com-

pared to a rigidly supported beam. Furthermore, increasing the nonlinear bearing stiffness shifted 

the frequency response curves to higher frequencies. Multiple scales analysis provided analytical 

solutions that closely matched numerical solutions obtained via Runge-Kutta integration, validating 

the modeling approach. In unstable regions, the system response was strongly dependent on initial 

conditions, with larger amplitudes producing upper branch oscillations and smaller amplitudes 

yielding lower branch motions. Overall, this work demonstrated that realistically modeling the shaft 

support through flexible bearings, rather than rigid supports, is crucial for accurate dynamical pre-

dictions. Incorporating bearing nonlinearity was also shown to influence the system characteristics. 

The findings enhance understanding of rotor-bearing system dynamics, which can aid in design and 

condition monitoring of rotating machinery. 
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