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Abstract 
Reducing vibrations in the structure can be performed by damping composite materials. Maximizing the 

modal damping ratio (MDR) as a physical property of these materials can be a good tool to deal with it 

which can be performed by the topology optimization (TO). This paper studies many characteristics of 

composite damping materials of constraining layer damping structures (CLD) that affect maximizing 

MDR by TO. Mainly, it pays attention to characteristics such as Rayleigh damping coefficients, loss 

factor, elasticity modulus, volume fraction and the thickness of the damping layer. The TO method used 

here is the moving iso-surface threshold approach (MIST) which was applied successfully to some 

optimization problems. For each case, an illustrative example is presented and results are compared 

together to show the effectiveness of applying the method on how different factors can influence the 

MDR and vibration reduction. Specifically, it shows that adding more damping material does not 

guarantee that vibration reduction is achieved. In addition, an increase of the constraining layer damping 

leads to less effectiveness of the approach in vibration reduction of the multiplayer plate. 
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1. Introduction 
Different methods are employed to alleviate harmful vibrations on the structures. One of the methods is 

attaching a given amount of materials in the form of passive damping materials optimally by topology 

optimization (TO) in the advantage of no adding more weights[1]. MDR or modal loss factor are physical 

properties of the damping materials and can be considered as objective functions in TO. However, there 

are many characteristics of composite damping materials that influence the MDR and thereby the TO 

and distribution of damping materials. 

TO has been applied frequently to address the vibration attenuation of the structures considering 

maximizing MDR or modal loss factor. In the study of Kim et al., [2] the optimal layouts derived by a 

heuristic topology optimization for loss factor maximization were compared to three other methods [3]. 

It was found that TO delivers about 61.14 percent larger modal loss factor. The eigenvector concept as a 

tool evaluating the damping loss factor was applied by Yamamoto et al., [4] and it was assumed that the 
eigenvectors with damping material were almost similar to the eigenvectors without damping material.  
The two-scale optimization approach is a technique that is used for maximizing MDR by topology 

optimization attained by the modal strain energy (MSE) method applied by Chen et al., [5] and Fang et 

al., [6]. MSE was also employed by Wang et. al., [7] and revised MSE by Xu et al., [8] in TO where the 

method utilized for an embedded and co-cured damping composite structure under the constraint of the 

total value of the experimental substance. It has resulted that the deleted elements in the structure 

correspond to the less sensitive elements in the sensitivity cloud.  
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In this paper, MIST topology optimization is employed to investigate the effects of different 

characteristics of composite damping materials such as Rayleigh damping coefficients, loss factor 

coefficient, thickness of layer damping and constraining layer, density of damping layer, and volume 

fraction on the maximizing MDR and then the optimal layout of the damping layer. Illustrative examples 

are presented to show the ability and validation of the method applied in this manuscript. 

 

2. Statement 
2.2 Damping layer optimization problem 
As a consequence, we consider the problem of maximizing MDR for a chosen vibrational mode. The 

design goal is attained by optimizing the distribution of damping materials in the admissible design 

domain of the damping layer for the structure compromises of a host layer (elastic layer), an embedded 

damping layer, and a constraining damping layer. The structural damping is assumed to be Rayleigh  

  C M K or non-proportional damping. C  is the damping matrix, M  is the mass matrix and K  is 

the stiffness matrix of the damping layer. α and β are Rayleigh damping coefficients. 

The discretized optimization problem is formulated as follows: 
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The symbol ρe expresses the volumetric density or weighting factor of the stiffer material in element e of 

the design domain of the damping layer which is meshed into nel elements and plays the role of the 

design variable in the problem. ρ is the vector of design variables. i (i=1, 2, 3, …, m) is MDR of ith 

mode with m being the ultimate number of modes. f is the maximum total fraction of stiffer material in 

the structure and it is less than one, V0 is the volume of the admissible design domain and ve is the volume 

of eth element. ε is the lowest value of element density equal to 0.001, ω is the eigenvalue, X is the 

eigenvector, and M and K are the total mass and stiffness of the structure, respectively. 

  

3. MDR definition 
Damping in composite structure can be modeled in the classical damping model which considers 

Rayleigh damping coefficients and non-classical damping which considers loss factor η. MDR as a 

physical property of composite damping material is defined for different damping models as follows: 

 

3.1 Classical damping model 
For the classical damping model, the MDR is written as follows [9]: 

( ( ) ( )i i iT U d   



   ρ ρ  (2) 

In which 
3

,
i i

 
 

 

   and iT , and iU  are respectively the modified Rayleigh damping 

coefficients and kinetic and strain energy density functions defined over the discretized design domain 

 and can be extracted from an FEM solver.  

 

3.2 Non-classical damping model 
For the non-classical damping model, the MDR can be given as [9]: 
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where vdU and bsU are strain energies of the dth and sth layers, respectively if the structure consists of many 

damping and elastic layers. d  is the loss factor of dth damping layer and b and v stand for the base layer 

and damping layer. 

 

4. Solution 
To solve the topology optimization problem given in Eq.1, the MIST method is utilized. The MIST 

method was used previously for solving some optimization problems [10]. This method includes three 

key points: a) presenting an integral over design domain which is defined in terms of objective function 

and constraint b) representing an objective function by a physical response function Φ which is integrated 

over the design domain c) using a consecutive scheme applying the previous response of the structure 

for the solution of the next consecutive optimization problem. When a physical response function Φ is 

determined and constructed over the 2D design domain, a pre-calculated iso-surface threshold t derived 

through a bisection or sorting method of normalized and filtered design variables, cut the 3D physical 

response function surface to give and update element densities.  

 

4.1 MIST formulation 
As a vital part of the MIST method, Φ is defined as the integrand in Eq. 2 or Uvd in Eq. 3. When Φ is 

defined, the standard formulation of MIST for the optimization problem given in Eq.1 can be 

reformulated as follows: 

1 2

2

0

find { , ,..., } ( 1,..., )

maximize: ( ) ( , )

subject to

( ) 0

1
( , ) , ( , ) , 1, ( 1,2,3,..., )

0

e

i

e

e nel

h t d

t
h t d f V h t e nel

t

  





 





 

   

 

 
       

 





ρ

x

K M X

 (4) 

 h is a homogenization function. 

 

4.2 Algorithm 
The whole numerical implementation procedure of the MIST iterative optimization scheme specialized 

for this problem consists of the following steps. 

Step 1: Define the MIST parameters such as Vf, penalty factor, initial element densities, filter radius rmin 

and etc. More detail of the MIST can be found in the literature [11]. 

Step 2: Carry out modal analysis by ANSYS FEM platform to solve the first term of equilibrium Eq. 1 

in conjunction with current or updated element densities and extract outputs for the next step. 

Step 4: Calculate the objective function and find nodal values using an interpolation scheme or 

extrapolation over moving element patches applying a quadratic Lagrange interpolation [11]; 

Step 5: Normalize and filter the objective function values and calculate the iso-surface threshold. 

Step 6: Construct the 3D physical response function and cut the 3D physical response function surface 

by the relevant iso-surface threshold t to derive the element densities or weighting factors. 
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Step 7: Update the element densities by proper move limit and element densities. 

Step 8: Check the convergence where the difference between values of two sequential iterative steps 

becomes less than a prescribed low value else starts again from Step 2. 

 

5. Examples and discussion 
To illustrate the applicability and efficiency of the method a clamped three-layer plate shown in Fig. 1, 

is considered. The elastic layer has Young’s module E=70MPa, material density ρ0=2700kg/m3, and 

Poisson’s ratio ν=0.3. Material properties for the damping layer are: E=20MP, ρ0=1140kg/m3, ν=0.4, 

relevant α and β and η= in the case of non-classical damping in following examples. The constraining 

damping layer has material properties similar to the elastic layer. Each layer of the multilayer plate is 

discretized with 60 30 SOLSH190 ANSYS elements. For all the examples volume fraction is set equal 

to 0.5 otherwise it is mentioned in the right place. The filter radius rmin=0.0125 m and the penalty factor 

is 3. The move limit scheme is the dynamic move limit with an upper value of 0.2 and lower value of 

0.0625 and it can become half when oscillation in variables occurs.  

 
Fig. 1: A multilayer plate consists of a base layer, a damping layer, and a constraining layer. 

 

5.1 Example 1: Rayleigh damping coefficients 
In order to explore the impacts of α and β Rayleigh damping coefficients on the MDR, different values 

of α and β are applied and results are compared together in Fig. 2a for α damping and Fig. 2b for β 

damping on 5th mode. As can be seen, results for α damping are lower than β damping, and differences 

between the obtained MDR for different β damping are considerable though results for α=0 and β=0 are 

in the lowest positions. Clearly, the alpha damping coefficient variance of the damping layer in this range 

does not significantly alter the MDR. 

 
                                         (a)                                                                          (b) 
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Fig. 2: The influences of α and β on MDR results, a) results for α damping, b) results for β damping  

 
                                      (a)                                                                         (b) 
Fig. 3: Optimal layouts of different α and β values, a)α and β optimal shapes, b) β=0. 

 

Fig. 3a depicts the layout for different values of α and β which is the same for all of them except for the 

layout for β=0 which is seen in Fig 3b. It is observed that while more materials are seen connected to the 

edges in Fig. 3a, more materials are seen inside of design domain in Fig. 3b. 

 

5.2 Example 2: Loss factor damping coefficient 
Iteration histories of MDR for different loss factors of the multilayer plate given in the previous example 

to compare the effect of changing loss factor on the material distribution and MDR are denoted in Fig. 

4a (α=β=0).  It is evident from these figures that MDR maximization is strongly affected by the amount 

of loss factor. It is concluded that the maximum of MDR maximization is not achieved by high values of 

loss factor nor lower values but for η=2e-5. Though η=2e-6 as the lowest value of the study gives the 

lowest value of MDR maximization, η=2e-4 also acts the same. For each case of η optimal layout is 

derived and it is concluded that they are the same as the layout for the previous example for α studying. 

 

 
 (a)                                                                               (b) 
Fig. 4: a)The effects of different loss factors on MDR, b)MDR variation during optimization process for the 

optimization of changing elasticity modulus. 
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its effect on the MDR maximization and layouts. Here, five elasticity moduli i.e., 10e9Pa, 30e9Pa, 
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as Example 1 except for α=0.4 and β=4e-7. Fig. 4b shows the curves of the MDR versus iteration number. 

The results reveal that by incrementing the elasticity modules of the damping layer, the amount of MDR 

has increased considerably. These results are anticipated since treatment in elasticity modulus impacts 

the system's kinetic and strain energy. 

 

 
                  (a)                                   (b)                                     (c)                                 (d) 
Fig .5: The optimal features of the damping layer for the optimization problem of changing the elasticity modulus 

of the damping layer. a) 10MPa and 30MPa, b)50MPa, c)80MPa, d)120MPa. 

 

Figures 5a-5d depict the optimal features of the damping layer for elasticity modulus changing from 

10MPa to 120MPa. It is observed that optimal layouts for lower elasticity modulus are approximately 

the same (10MPa to 30 MPa) while it changes significantly with elasticity modulus maximization. 

 

5.4 Example 4: Damping layer thickness 
To illustrate the application of the MDR method in the design of provided viscoelastic dampers for 

structures and compare the effect of the thickness of the damper layer on the overall damping of the 

structure, five different thicknesses are studied for the plate similar to the plate in Example 3 and results 

are shown in Fig. 6a. Although the total damping of the structure is maximized, it does not guarantee that 

the process of optimization is a maximization process where the MDR maximize from initial iteration to 

the last iteration number. It is observed that in lower and larger thicknesses, maximization of MDR 

happens while in mediocre thicknesses, MDR tends to be minimized. 
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Fig. 6: a) MDR variations during optimization process for the optimization problem of different thicknesses of 

damping layer. Different optimal features of the damping layer with different thicknesses b)15mm, c)25mm, 

d)35mm, and e)45mm. 
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Optimal layouts with different features of coverage were obtained using the considered approach 

examined to determine the influence of the thickness of the damping layer on optimal layout and material 

coverage. As shown in Fig. 6b-6e for the case of thickness equal to 5mm, the layout obtained that gives 

the largest percent of maximization, the layout is analogous to Fig. 5a. As the amount of thickness is 

enlarged, part of the materials in the middle tend to vanish and materials are covering near the borders 

of the shape. On the other hand, the connection between parts of damping materials inside the design 

domain happens with the increase in thickness. 

 

5.5 Example 5: Volume fraction 
The example is used to look into the convergence of the approach and its capability to reproduce the 

solution of the maximum MDR, exploring the effect of volume fraction on convergence and optimal 

layouts. The same structure with similar material properties to Example 3 but different volume fractions 

i.e., Vf=0.1, 0.3, 0.6, and 0.8 is used. The optimization process is conducted and results are plotted in 

Fig. 7a. As can be demonstrated, results for Vf=0.1 and 0.8 are close to each other with some fluctuations 

assigned to the Vf=0.1. Further, there is a huge gap between results for Vf=0.3 and 0.1 in which results 

for Vf=0.1 are three times larger than results related to Vf=0.3. 
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(a) (d) (e) 
Fig.7: a) Comparison of MDR for different volume fractions. Comparison of optimal layouts for different volume 

fractions, b)Vf=0.1, c)Vf=0.3, d)Vf=0.6 and e)Vf=0.8.. 
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covered at the right side by maximizing in volume fraction. Taking the figure for Vf=0,8, it resembles 

some features of the figure with Vf=0.6 in which materials that were distinct in Fig.7d are now connected 

to each other in Fig. 7e.  

 

6. Conclusion 
 Five primary conclusions from this work are summarized as follows:  

1) By comparing the impact of different α, β and η on the isotropic and laminated composite structure, it 

is concluded that the objective functions for α are quite close to each other; much less than ones for β 

values though objective functions for β values are maximized in conjunction with β increment.  In the 

meantime, the objective functions for η decline with η increment. Further, the optimal shapes for α, β, 

and η are the same except for β=0.  
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2) Considering five different elasticity modulus, it is concluded that derived optimal features are different 

from each other, and obtained MDRs are maximized with the maximization of applied elasticity modulus.  

3) For five cases of different thicknesses of damping layer, it is found that the process of optimization 

has not totally a maximization or minimization trend. While for lower values of thickness, MDR 

maximizes however it minimizes in larger thicknesses and most of the time derives the lesser objective 

functions in higher values of thickness. The optimal layouts are also different in which for the lower 

values of thickness, they are the same but they have different shapes in greater thicknesses.  

4) The distribution of solid elements is influenced by the volume fraction of the design domain. In some 

cases, especially in lower values of volume fraction, large values of MDR are derived while in larger 

values of volume fraction, lower values of MDR are achieved. While in previous cases, the optimal 

shapes were somehow similar to each other, but in this case, they were totally different. 

The strategy given here is a preliminary endeavor to solve the issue of topology optimization for 

laminated plates with design-dependent loads and is a promising scheme worthy of further investigation 

and application in this field. 
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