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Abstract 

Numerous comprehensive studies have investigated the effectiveness of joint time-frequency 

transformations for analyzing non-stationary time series data. The primary objective of these 

investigations is to improve accuracy in both time and frequency domains, which is crucial 

for a wide range of applications. These methods have demonstrated significant efficacy in 

various research fields, particularly in audio and acoustic signal processing. Despite their 

success, several challenges persist, such as the occurrence of cross-term errors. This paper 

presents a comparative analysis of two prominent time-frequency analysis methods: The 

Short-Time Fourier Transform (STFT) and the Hilbert-Huang Transform (HHT). We employ 

three acoustic signal types, drawn from industrial applications, music, and audio processing, 

to evaluate the performance of each method. Our findings reveal that the STFT outperforms 

the HHT, providing more accurate results across all tested signal types. Notably, the HHT in-

troduces a higher risk of cross-term errors, which can compromise the clarity and usability of 

the analyzed data. 
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1. Introduction 

In diverse domains such as medicine, industry, and music, our environment is filled with a 

plethora of non-stationary time series and acoustic signals. These signals display a range of qualita-

tive characteristics, ranging from pleasant to unpleasant, yet each can include valuable information-

al content. Notably, a significant proportion of acoustic signals manifest as non-stationary time se-

ries, inherently characterized by time-varying components. Hence, analyses that treat these signals 

solely in either the time or frequency domain may not fully capture all essential information con-
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tained within them. Consequently, considerable efforts have been dedicated to conducting research, 

with the objective of formulating a diverse range of time-frequency methods. These methodologies 

offer a more precise and comprehensive analysis of these signals. Categories of these methods are 

the Time-Frequency Distribution (TFD), Wavelet Transform (WT), Synchro squeezed approaches, 

and Data-driven mode decomposition methods,[1], [2].   

Time-Frequency Distribution (TFD) methods can be classified into two principal categories: 

linear and nonlinear techniques. Among the linear approaches, the Short-Time Fourier Transform 

(STFT) stands out as the most straightforward method. This technique basically segments the time 

series into short intervals through a sliding window process, followed by the computation of the 

Fourier transform for each segment, [3].  

 
(1) 

 
(2) 

In contrast, Cohen introduced a nonlinear TFD method known as Cohen's Bilinear Distribu-

tion (BD) which calculates the Fourier transform of a time-varying covariance function using a 

Kernel function [4].  Subsequently, diverse BD techniques have emerged, utilizing distinct kernel 

functions to achieve a high-resolution energy distribution. Notable instances of such techniques 

include the Wigner-Ville Distribution, Choi-William Kernel, and Cone Kernel, among others [1], 

[5]. Beyond BD methods, the Gabor Transform constitutes another approach dedicated to transmut-

ing time series into the time-frequency domain. This method involves the application of a sliding 

Gaussian function to the time series, followed by the Fourier transform on each segmented portion 

[4].  Furthermore, an enhanced iteration of the Gabor Transform is the S-transform, also known as 

the Stockwell Transform. The S-transform, rooted in the STFT, employs a frequency-dependent 

Gaussian window, thereby augmenting its analytical performance [6].  

Instead of applying a uniform window through each time intervals, the Wavelet Transform 

(WT) employs a diverse set of filters with varying bandwidths that span from the lowest to the 

highest frequencies. Extensive research has been conducted on wavelet transform techniques to 

enhance its accuracy. Amongst others,  the techniques have been improved by utilizing a variety of 

“mother wavelet” forms and innovative approaches [7], [8], [9], [10]. 

Also, in recent years, there has been significant attention given to data-driven mode decompo-

sition methods. These methods are designed to effectively break down a given signal into multiple 

zero-mean Intrinsic Mode Functions (IMFs). The Hilbert-Huang Transform (HHT)[11] is one such 

method that is commonly used in conjunction with Empirical Mode Decomposition (EMD) [12]. 

 

(3) 

Where L is the number of IMFs and  is the residue. EMD have successfully been used in the 

analysis of non-stationary signals.  

 Other related approaches, such as Bivariate Empirical Mode Decomposition (BEMD), Multi-

variate Empirical Mode Decomposition (MEMD), Ensemble and Empirical Mode Decomposition 

(EEMD), have also gained traction and found applications across a wide range of research areas 

[13], [14]. Besides EMD, the Variational Mode Decomposition (VMD)[15], Fourier Mode Decom-

position (FMD)[16], and Dynamic Mode Decomposition (DMD) [17] have also been extensively 

investigated and implemented in various studies. These alternative methods offer additional oppor-

tunities for analysis and study in the field of mode decomposition. 

In order to improve the time and frequency resolutions, authors have also explored the poten-

tial of Reassignment Methods (RM) and Synchrosqueezed Transform techniques (SST), as alterna-

tive approaches to overcome the limitations of existing techniques, [8]. A noteworthy example is 



The 14th International Conference on Acoustics & Vibration (ISAV2024),  

Karazmi University, Karaj, Iran, December 2024 

 

 

3 

the Fourier Synchro-squeezing Transform (FSST)[18], which involves performing the Short-Time 

Fourier Transform (STFT) of the signal using a windowing technique. Subsequently, the Instanta-

neous Frequency (IF) is estimated by taking the derivative of the transformed signal with respect to 

time. Finally, the FSST coefficients are obtained by selecting the STFT coefficients that correspond 

to the calculated IFs. By incorporating the concept of instantaneous frequency into the inherent ca-

pabilities of wavelet methods, the Wavelet Synchro-Squeezing Transform (WSST) achieves en-

hanced accuracy and robustness, [9]. Despite the successful implementation and improved accuracy 

demonstrated by various transforming techniques across different research domains, their usage 

encounters challenges such as mode mixing, cross-term errors, and high-frequency harmonic distor-

tion, [19], [20], [21]. 

Joint time-frequency analysis techniques have been widely implemented in the field of audio 

and acoustic signal processing such as acoustic-based condition monitoring [22], signal identifica-

tion [23] and reconstruction [24], music [25], and voice recognition [26]. Beside these areas, re-

search on reducing the computational costs and data volume highlights remarkable challenges, es-

pecially when applying these methods in research areas such as Internet of Things (IoT), Cloud 

Computing, where vast amounts of data are encountered [27], [28]. To tackle this issue, research 

groups have turned to the Reduced-rank Spectral approach to reduce model complexity [29], the 

application of Sparse representations [30], [31], or reduced-order machine-learning-based tech-

niques [32].  

2. Case Study Example I: Acoustic Signal Processing for Condition Monitoring 

In the context of Industry 4.0 and the increasing utilization of Internet of Things (IoT) and In-

dustrial Cloud Computing (ICC) approaches, the use of acoustic signals in industrial condition 

monitoring has attracted significant attention from researchers, [22], [35]. Therefore, this section 

presents the concerns of the application of the Hilbert-Huang transforming technique to an industri-

al acoustic signal which is usually used for condition monitoring. 

 
Figure 1. The non-stationary industrial signal 

As rotary machines have become more complex, the balancing process has become crucial in 

condition monitoring to ensure reliable and safe machine operations. Imbalance is a common issue 

in flexible rotating machinery, which can lead to severe vibration and noise levels. However, an 

unbalanced object can induce significant unwanted deflection through resonant vibration at fre-

quencies close to certain rotational speeds, known as critical speeds. This is particularly critical for 

flexible machines that typically operate at rotations above their critical speeds. To analyse such 

complicated time series during the run-up and shutdown stages, including critical speeds, research-

ers in condition monitoring can consider the vibration and/or acoustic responses of the rotary ma-

chine. In this research, the proposed method's effectiveness is evaluated by examining the signal 
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displayed in Fig. 1 which was measured during the run-up and shutdown stages of a rotating ma-

chine with the sampling rate 2000 samples per second.  

In contrast to the Short-Time Fourier Transform (STFT), the spectra generated by the imple-

mentation of the Hilbert-Huang Transform (HHT) are not accurate enough. Specifically, the dia-

grams reveal the presence of the second harmonic of the original signal when the rotational speed of 

the machine is 2970 rpm (equivalent to 49.5 Hz), with the second harmonic appearing at a frequen-

cy of 99 Hz. Notably, the HHT spectrum displays a cross-term error, wherein the amplitudes be-

tween 49.5 Hz and 99 Hz are larger than those associated with these frequencies. 

 
a. The Short-Time Fourier Transform (STFT) Technique 

 
b. The Hilbert-Huang Transform (HHT) Technique 

Figure 2. The joint time-frequency domain using different techniques 

3. Case Study Example II: Music Signal Processing 

Musical signals, characterized by their non-stationary nature, exhibit complexity and tem-

poral-frequency variations. Therefore, a comprehensive analysis of such signals in the time and 

frequency domains is essential, despite the inherent complexity associated with music. To compare 

the proposed technique with established methods, a non-stationary time series (a 15-second violin 

music piece recorded in a defused field environment at a sampling rate of 44100 samples per sec-

ond) is selected for analysis, considering the potential presence of echo effects and cross-term er-

rors, as shown in Fig.3. Figure 4 illustrates the results obtained by employing various methods. One 

of the main challenges lies in implementing the HHT and STFT methods, which demonstrates in-

sufficient precision. It is anticipated that the spectrum may display a single frequency at a given 

time as a harmonic sound, commonly known as a “musical note” by musicians. Since a violin-

generated sound can be treated as a pure harmonic signal, it is expected to able to clearly observe 

such a characteristic, [36]. 
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Figure 3. The non-stationary music signal 

 

 

a. The Short-Time Fourier Transform (STFT) Technique 

 
b. The Hilbert-Huang Transform (HHT) Technique 

Figure 4. The joint time-frequency domain using different techniques 

In contrast, utilizing the HHT and STFT methods, as depicted in Figure 4, analysis becomes 

more intricate and challenging due to the presence of harmonics and cross-term errors in the joint 

time-frequency spectrum. Certainly, analysing a piece of music using the joint time-frequency do-

main requires specialized knowledge in related research areas. Readers are encouraged to refer to 

the references for a more in-depth analysis of the joint time-frequency spectrum of music [36].  

4. Case Study Example III: Audio Signal Processing 

Despite extensive research on audio signal processing techniques, achieving high-quality au-

dio signals remains a continuous challenge, particularly in terms of noise cancellation. A specific 

challenge arises when the original signal and the noise contain overlapping frequencies, known as 

Frequency Overlap [38]. To tackle this issue, a joint time-frequency analysis emerges as a potential 

solution. In this section, these methods are applied to a “noisy audio signal, as shown in Fig.5 which 

was recorded with sampling rate of 44100 samples per second. The main challenge with this signal 

is the presence of frequency overlap, which adds complexity to the analysis and subsequent noise 

cancellation process.  
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Figure 5. The non-stationary original and noisy audio signals 

Figure 6 showcases the time-frequency analysis of the given audio signal using the Hilbert-

Huang transform, Short-Time Fourier Transform, and the proposed method. The Hilbert-Huang 

transform exhibits ambiguous areas, whereas the proposed method accurately identifies frequencies. 

Using these calculated frequencies, a simple bandpass filter can be designed to demonstrate the ef-

fectiveness of this method. 

 
a. The Short-Time Fourier Transform (STFT) Technique 

 
b. The Hilbert-Huang Transform (HHT) Technique 

Figure 6. The joint time-frequency domain using different techniques 

When it comes to noise cancellation through filter design, the method's capacity to target spe-

cific frequencies, as illustrated in Figure 6, can offer a potential solution. This capability can also be 

considered an advantage of the proposed method. Readers interested in detailed designs for audio 

filtering and noise cancellation are strongly encouraged to consult the referenced paper [37].   
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5. Conclusion 

While time-frequency transformation methods have been extensively researched and applied 

in various domains, including audio and acoustic signal processing, achieving higher accuracy re-

mains a significant challenge. In response to this need, this study presents a comparative analysis of 

two well-established methods: the Short-Time Fourier Transform (STFT) and the Hilbert-Huang 

Transform (HHT). The analysis uses three different acoustic signals from the fields of industrial 

sound, music, and audio signal processing. The results demonstrate that the STFT technique 

demonstrates notably superior performance in this comparison. This study not only highlights the 

strengths of STFT in practical applications but also underscores the limitations of HHT, contrib-

uting valuable insights for researchers and practitioners in the field of acoustic signal processing. 
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