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Abstract 

This paper introduces a novel time-frequency signal analysis method for analysing non-

stationary signals called the Reduced-order Time-Frequency Transform (RTFT). Spectral 

analysis using the Fourier Transform is effective for stationary time series where signal char-

acteristics remain constant over time. However, for non-stationary time series such as modu-

lated signals, the spectral content varies with time, thus rendering the time-averaged ampli-

tude spectrum derived from the Fourier Transform insufficient for tracking changes in signal 

magnitude, frequency, or phase. The RTFT technique offers the capabilities of traditional 

time-frequency transformations by employing Pearson's Correlation Coefficient to selectively 

reduce the data volume in the joint time-frequency domain. This method emphasizes highly 

correlated frequencies and phases leading to a more efficient data representation without sig-

nificant loss of accuracy. The RTFT is validated through comparative analysis with estab-

lished methods, including the Short-Time Fourier Transform (STFT), Hilbert-Huang Trans-

form (HHT), Fourier Synchrosqueezed Transform (FSST), and Wavelet Synchrosqueezed 

Transform (WSST). A non-stationary synthesized and real-world vibration-based condition 

monitoring signal is analysed using both RTFT and the traditional methods to demonstrate 

the superiority of the RTFT in reducing data volume while maintaining accuracy. 

Keywords: Time-Frequency Analysis; Condition Monitoring; Data Volume Reduction. 

1. Introduction 

Non-stationary time series inherently change over time, meaning their statistical characteris-

tics evolve or change with time. Processing these series as a single entity in the time or frequency 

domain consistently fails to capture important information which is essentially a consequence of the 

statistical characteristics changing with time[1]. Consequently, extensive research has been devoted 

to developing a diverse range of time-frequency methods for more accurate and reliable analysis. 
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However, to date no single method has yet been developed that can comprehensively address all 

non-time-invariant transforms. So, in this introduction we shall review several key methods recog-

nized within the research and scientific community of which four stand-out. These include Time-

Frequency Distributions (TFD), Wavelet Transforms (WT), data-driven decomposition methods 

and finally Synchrosqueezed approaches. The reader can read more details about these and other 

methods within the 2021 review by Akan and Cura, [2].   

Nonetheless, Time-Frequency Distribution (TFD) methods can basically be categorized into 

linear and nonlinear techniques. The Short-Time Fourier Transform (STFT), a linear technique, 

segmenting the time series using a sliding window and computes the Fourier transform of each 

segment, [3]. This was a common technique for a few decades but in 1995, Cohen introduced a non-

linear TFD method known as Cohen's class of Bilinear Distribution (BD), which computes the Fou-

rier transform of a time-varying covariance function using a kernel function, [4]. Various BD tech-

niques, such as the Wigner-Ville Distribution, Choi-Williams Kernel, and Cone Kernel, have been 

developed to achieve high-resolution energy distribution [2,5]. Similarly, the Gabor Transform ap-

plies a sliding Gaussian function to transform time series into the time-frequency domain, while the 

Stockwell Transform (S-transform) enhances the Gabor Transform by using a frequency-dependent 

Gaussian window, resulting in better performance, [5,6]. 

In contrast to the STFT's uniform window, the Wavelet Transform (WT) uses a diverse range 

of filters with varying bandwidths across frequencies. Research on continuous and discrete wavelet 

transforms has enhanced accuracy by utilizing various mother wavelet forms, such as Haar, 

Daubechies, Coiflet, Morlet, Meyer, and the Mexican Hat [7–9]. For example, the Malvar expan-

sion presents a wavelet-based approach with windowing techniques determined by an entropy 

measure, representing signals with discrete cosine functions, [10]. 

Data-driven decomposition methods have gained significant attention in recent times, aiming 

to decompose signals into zero-mean Intrinsic Mode Functions (IMFs). The Hilbert-Huang Trans-

form (HHT) applied to Empirical Mode Decomposition (EMD) and its derivatives, such as Bivari-

ate Empirical Mode Decomposition (BEMD), Multivariate Empirical Mode Decomposition 

(MEMD), and Ensemble Empirical Mode Decomposition (EEMD), are widely used [11–14]. Other 

methods include Variational Mode Decomposition (VMD), Fourier Mode Decomposition (FMD), 

and Dynamic Mode Decomposition (DMD), [15–17]. 

And finally, Synchrosqueezed Transform techniques (SST) and Reassignment Methods (RM) 

which have been explored to enhance time and frequency accuracy. The Fourier Synchrosqueezing 

Transform (FSST) refines the STFT by estimating instantaneous frequency and selecting corre-

sponding STFT coefficients  [18,19]. The Wavelet Synchrosqueezing Transform (WSST) incorpo-

rates instantaneous frequency into wavelet methods, achieving higher accuracy and robustness [9]. 

Despite improvements in accuracy, various transforming techniques described above face 

challenges such as mode mixing, cross-term errors, and high-frequency harmonic distortion, 

[20,21]. Recently, a machine-learning-based method for fault recognition in tool condition monitor-

ing proposed a novel joint time-frequency transforming technique, producing clearer time-

frequency spectrums but with high computational costs [24]. To address these challenges, a re-

duced-order machine-learning-based method has been recently proposed for fault recognition in 

tool condition monitoring using machine learning (ML) techniques. This ML-based method intro-

duces an innovative joint time-frequency transforming technique. Although this approach results in 

clearer time-frequency spectrums, making failure symptom recognition more straightforward and 

reducing data volume compared to other methodologies, it still incurs high computational costs due 

to the numerous fitting processes. Hence, this study presents a novel reduced-order time-frequency 

transform technique to address these challenges.  
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2. Methodology 

The reduced-order time frequency method divides a non-stationary time series into several 

short-time segments and considers each segment as a summation of stationary functions. This sec-

tion presents the fundamental concept and formulation of the proposed RTFT method. The method 

can be expressed, mathematically as follows: 

 
(1) 

where represents the j
th

 segment in the given signal,  denotes the coefficients, and 

corresponds the basis functions. In accordance with the Gabor expansion, if the time seg-

ments are selected short enough, the coefficients, , can be approximately assumed as constant 

values which results in ,[2]. Then, by assuming  as summation of basis 

functions, , it is possible to estimate the original signal among the  short-

time segment calculating unknown parameters such as frequencies and phases. It should be noted 

that the basis functions can be chosen as either sine or cosine functions: 

 

(2) 

where the estimated time series for the  segment is represented by . The model order, 

frequency in Hertz, and phase difference in the  short-time segment are denoted as , , and 

, respectively. As shown in Fig.1, a schematic diagram is presented to clarify the algorithm of the 

methodology. The RTFT technique divides a non-stationary signal into several short-time segments 

using a fixed rectangular window over time. Then, the Pearson’s correlation coefficient is calculat-

ed separately between each segment of the original time series and the basis function, including all 

individual frequencies ranging from  to . 

 
Figure 1. The structure of the Reduced-order Time-Frequency Transform (RTFT) method 

The calculated correlation coefficients are then sorted, enabling the identification and ranking 

of the most influential frequencies, starting from the highest correlated frequency.  Via the summa-

tion in Eq. (2), the expression in Eq. (3) represents the assumed summation and Pearson's correla-

tion function: 

 

(3) 
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According to the definition of the Pearson's correlation coefficient, the signals become nor-

malized with zero-mean and unit-variance, shown by superscript . Where  and  are the 

standard deviation and mean of the time series, while signifies the number of data in each 

segment. It is noted that the phase difference can play a significant role in influencing the Pearson's 

correlation coefficient. Thus, determining this parameter is crucial to achieving the highest correla-

tion. While the optimal frequencies and phases, , can be calculated iteratively, 

this approach leads to an increase in runtime complexity to . To optimize this process and 

reduce runtime, the optimal frequencies can be calculated iteratively while the optimal phases are 

derived mathematically using the following expressions. However, the runtime complexity exhibits 

a loglinear relationship with the frequency range and resolution. Similar to other well-established 

methods, the runtime complexity can be considered as , 

 
 

(4) 

where optimal frequencies can be calculated iteratively, and the optimal phases determined 

below by calculating the derivative of Eq. (4) with respect to  : 

 

 
(5) 

In this case, the correlation between the signal and cosine functions, , can 

conceptually be considered similar to the Discrete Cosine Transform (DCT), [24]. In contrast with 

the well-known discrete cosine transform, DCT, for the RTFT method the frequency resolution 

does not depend on the amount of data in each segment. 

To determine the model order, , various factors need to be reviewed. It is generally accept-

ed that if the amplitudes are considered, increasing the model order generally leads to higher corre-

lation coefficients and improved estimation accuracy. However, this comes at a cost of increased 

computational load. In this case by neglecting the amplitudes and only considering frequencies and 

phases, it is possible to reduce computational costs, although it makes the methodology most chal-

lenging for signal reconstruction. Therefore, it is crucial to find an optimal balance between accura-

cy and computational efficiency. To address this, a correlation change level can be utilized to select 

the optimal model order. This involves calculating the correlation changes between different model 

orders, and aiming for a desired correlation change between the original signal and the basis model 

within the selected period. As frequencies and phases are ranked based on the highest calculated 

correlations, they are progressively added to the summation if the new correlation coefficient ex-

ceeds the previous coefficient multiplied by a predefined participation ratio called the ratio of par-

ticipation, : 

 

 
(6) 

where  and   represent the frequency and phase related to the  highest correlation coef-

ficient within the  segment. In essence, the impact of the ratio  can be explained as follows: the 

method sorts the frequencies according to their highest correlations and treats the first-ranked fre-

quency as the initial estimate. Subsequently, additional frequencies are incorporated into the sine 

summation of the estimated signal if they enhance the correlation between the new estimate and the 

original signal, as anticipated by the ratio . If not, the addition process is stopped, and the count 

number  remains fixed as . The core of the RTFT method consists of two matrices, where each 

column corresponds to a specific time interval, and the number of rows is determined by the select-

ed order. The first matrix, referred to as Matrix , contains the frequencies ranked highest for each 

short-time segment. The second matrix, known as Matrix , includes the corresponding correlation 
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coefficients. Finally, it is worth mentioning that the parameters utilized in the windowing technique, 

such as window type, length, and amount of overlap, can influence the resulting spectrum and 

should therefore be selected carefully.  

3. Experimental Results  

In this section, the application of the proposed method specializes in analysing the most effec-

tive parts of an experimental multicomponent nonstationary signal. As depicted in Fig.2, a real-life 

experimental signal from vibration-based tool condition monitoring, consisting of a nonstationary 

multicomponent signal lasting 20 seconds in a 200-minute timeframe, was chosen to compare the 

proposed technique with other methods. The provided signal includes  data points obtained 

at one-second intervals within each 10-minute data segment with a sampling rate of 10 kHz. 

 
Figure 2. Experimental validation: TCM non-stationary signal 

Fig. 3 illustrates the results of the implemented methods (3b-e) against the proposed method 

(3a) regarding this experimental signal. As discussed in previous numerical case study, the imple-

mentation of the HHT method was challenging, as shown in Fig 3.e. 

 
(a). The proposed Reduced-order Time-Frequency Transform (RTFT) technique 
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(b). The Short-Time Fourier Transform (STFT) Technique 

 
(c). The Wavelet Synchrosqueezed Transform (WSST) technique 

 
(d). The Fourier Synchrosqueezed Transform (FSST) technique 

 
(e). The Hilbert-Huang Transform (HHT) technique 
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Figure 3. Joint time-frequency domain results  
Considering the results within Fig. 3, it is observed that the most effective frequencies vary 

across different separated bands ranging from 2000 Hz to 3500 Hz, while other frequencies are not 

as relevant to the tool wear symptoms. Thus, it appears that the RTFT methodology yields a more 

distinct joint time-frequency spectra. Hence, having greater clarity compared to others can be seen 

as a significant advantage of the proposed method. To gain a better undemanding of how the analy-

sis of these spectrums results in the diagnosis of symptom failures, it is recommended to refer to the 

original paper which focuses on symptom recognition [24,25]. It is noteworthy that the following 

table provide a comparison based on the full data size. However, should there be a need to reduce 

the data volume, it is possible to imply the sparse theory in conjunction with these well-established 

methods. This approach facilitates a decrease in data size by prioritizing the largest volume, rather 

than considering the entirely of the dataset. Nevertheless, it is important to highlight that, similar to 

the original methodologies, the forthcoming tables incorporate a comparison of the full data size.  

 
Table 1. The data size of the time-frequency Spectrum 

STFT   
HHT  

WSST  
FSST  

RTFT*  
As expected, the proposed technique, formulated as a reduced-order technique, leads to a 

smaller data volume in terms of the output matrix size. When considering the data volume of the 

results, it is important to emphasize the effect of the ratio of participation, , in controlling the 

amount of transformed data.  

4. Conclusion 

Although time-frequency transform methods have been studied and implemented in a wide 

variety of research areas for decades, achieving more accurate results with less data volume remains 

an open problem. In light of this need, this research proposed a novel approach named the Reduced-

Order Time-Frequency Transform (RTFT) technique, aimed at reducing the data volume in joint 

time-frequency domain results while not compromising accuracy or efficiency. The effectiveness of 

the suggested RTFT has been validated by comparing it with other well-established techniques. The 

vibration-based tool condition monitoring signal is analysed to demonstrate the superiority of the 

RTFT in reducing data volume while maintaining accuracy. 
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