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Abstract 

A hybrid deep learning model combining Convolutional Neural Networks (CNNs) with a 

Transformer Encoder was proposed to investigate the nonlinear dynamics of a laminar, par-

tially premixed counterflow flame under acoustic excitation. Experimental data from a com-

bustion instability laboratory were used to train the model. OH* chemiluminescence was em-

ployed to measure flame responses across frequencies from 20 to 350 Hz and pressure ampli-

tudes up to the extinction threshold. The interactions between acoustic waves and flame dy-

namics were analysed, revealing the influence of amplitude and frequency variations on heat 

release rates. Despite dataset limitations, the model accurately approximated the flame transfer 

function, replicated chemiluminescence signals, and predicted flame responses to diverse 

acoustic excitations. High-speed imaging and image processing techniques validated the re-

peatability of flame structures, confirming consistent characteristics across testing cycles. The 

findings highlighted the potential of the hybrid deep-learning approach for predicting flame 

dynamics in complex acoustic environments, offering insights for mitigating combustion in-

stabilities in engineering applications. 

Keywords: Acoustic wave; deep learning; partially premixed flame; convolutional neural net-

work; encoder of transformer; flame nonlinear response; combustion instability. 

1. Introduction 

Large-amplitude pressure variations caused by thermoacoustic oscillations were found to limit 

the operational range and increase the risk of fatigue-induced mechanical failure in gas turbine com-

bustors [1], [2]. Optimization approaches aimed at identifying optimal combinations of geometrical 

and operational parameters were shown to mitigate these instabilities by reducing the likelihood of 

thermoacoustic instability. Traditionally, adjoint-based techniques—mathematical tools derived from 

governing equations—were widely employed to evaluate the effects of design or operational changes 

on thermoacoustic eigenvalues and system stability. Recently, data-driven optimization methods were 
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employed, as they required no prior knowledge of the system's underlying physics. These black-box 

approaches assessed performance improvements and iteratively adjusted parameters based on empir-

ical data. A key element in understanding thermoacoustic behaviour was identified as the flame trans-

fer function (FTF), which describes the relationship between fluctuations in the flame's heat release 

rate and the acoustic inlet velocity [3]–[6]. The FTF characterized the dynamic response of the flame 

to acoustic excitation, dependent on both the amplitude of velocity fluctuations, |u'/u̅|, and the excita-

tion frequency, f. Mathematically, the FTF was expressed as equation (1): 

 𝐹𝑇𝐹(𝑓, |𝑢′ 𝑢̅⁄ |) =
𝑄′ 𝑄̅⁄

𝑈′ 𝑈̅⁄
 (1) 

where U′ represented fluctuations in acoustic velocity, U̅ denoted the mean flow velocity, Q′ 

indicated variations in the flame's heat release rate, and Q̅ referred to the mean heat release rate. The 

FTF comprised two components: gain and phase. The gain reflected the amplitude ratio between heat 

release rate fluctuations and acoustic velocity variations, while the phase represented the time delay 

or phase shift between acoustic disturbances and the resulting heat release oscillations. In practice, 

fluctuations in heat release were inferred from optical measurements, such as chemiluminescence, 

𝐼𝐶𝐻 or 𝐼𝑂𝐻 due to their non-intrusive nature using equation (2) [7].  

 𝑄′ 𝑄̅⁄ = 𝐼′ 𝐼 ̅⁄  (2) 

Accurate estimation of the Flame Transfer Function (FTF) is essential for controlling thermo-

acoustic instabilities and understanding flame dynamics [8]. Traditional models often fail to capture 

nonlinear behaviors, but machine learning (ML) techniques have shown promise. Advanced archi-

tectures, including Transformer encoders, LSTM networks, and physics-informed multi-layer per-

ceptron, have demonstrated improved accuracy in predicting nonlinear flame responses to acoustic 

excitations [9], [10]. Neural networks have also successfully simulated linear and nonlinear turbulent 

flame responses to broadband forcing [11]. ML models further predict acoustic power levels required 

for flame extinction using parameters like frequency, equivalence ratio, wall diameter ratio, and 

Reynolds number [12]. These studies underscore ML's potential to enhance combustion control, im-

proving safety and performance across diverse conditions. 

This research experimentally predicted the FTF of a methane-air flame under acoustic pertur-

bations. Using a test rig, OH* chemiluminescence captured heat release rates, and high-speed imaging 

validated repeatable parameters, such as flame area, thickness, and heat release position. The deep 

learning model accurately predicted the nonlinear FTF for both simple and complex signals. By ex-

perimentally validating responses across varying frequencies and pressures, this approach enhanced 

flame response modeling and provided valuable insights into combustion dynamics. 

2. Experimental Procedure  

2.1 Setup and diagnostics  

The experimental setup of the counterflow burner in the Advanced Combustion Laboratory, 

Sharif University of Technology, is shown in Figure 1 [12]–[14]. The test rig consisted of two iden-

tical sections (top and bottom) with a 0.125 mm mesh grid for uniform velocity profiles over a 31.5 

cm pipe, along with a converging nozzle, honeycomb plenum, flash-back arrestor, and loudspeaker. 

Nitrogen co-flowed in the lower section to shield the flame from external disturbances. Loudspeakers 

(Vibe Black Air 12) generated modulated acoustic waves (20–1200 Hz), measured by an SPL meter 

(B&K 2250, ±1.5 dB). Acoustic waves were produced via signal generator software, amplified, and 

delivered to the speakers (Hertz HCP 1DK). 

Heat release rate was measured via OH* chemiluminescence [15]. A high-speed CMOS camera 

(1920 fps, 1280×720 resolution) with a 430 ± 10 nm bandpass filter captured CH* chemilumines-

cence, while a photomultiplier tube (Thorlabs PMM01) measured instantaneous CH* and OH* 
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intensities. A microphone monitored the phase lag between photomultiplier signals and acoustic pres-

sure signals. Data were sampled at 3.5 kHz and recorded over 2-second intervals, capturing at least 

700 harmonic cycles. 

 

 

 

Figure 1. Schematic of the acoustic excitation and diagnostics system integrated into the experimental coun-

terflow flame setup (left) and an illustration depicting the area, thickness, and displacement of the centre of 

heat release in the counterflow flame (right)  

 

As with any dynamic system, acoustic drivers were characterized by a response function. Ex-

perimental tests were conducted to evaluate their ability to generate waves with the desired amplitude 

and phase. Pressure amplitudes of 3, 5, and 7 Pa were produced across a frequency range of 20–350 

Hz by adjusting the acoustic driver's voltage and input current. The phase difference between the 

signal generator and the acoustic driver was determined using a data acquisition system (DAQ) with 

a 3500 Hz sampling rate. To prevent interaction between ambient air and nozzle streams, a 99.99% 

pure nitrogen (N₂) jacket was employed. The nitrogen flow rate was maintained at a minimum of 20 

L/min to ensure the flame reaction zone remained undisturbed during acoustic excitations. Air and 

methane flows were set at 15 L/min and 2.25 L/min, respectively, from the bottom nozzle, while 15 

L/min of air was supplied from the top nozzle. This configuration ensured that hydrodynamics and 

reaction kinetics did not affect the results, isolating flame-acoustic field interactions as the sole 

variable. The effects of steady harmonic acoustic oscillations with varying amplitudes on partially 

premixed counterflow flames were analyzed within the frequency range of 20–350 Hz. Higher 

frequencies were excluded due to flame insensitivity, and lower frequencies were disregarded due to 

acoustic exciter limitations. With acoustic wavelengths ranging from 17.3 m to 1 m, significantly 

larger than the flame thickness, the waves interacted with the flame as planar waves inside the burner 

nozzle. 

3. Processing of the experimental data 

To analyze the governing physical phenomena, the flame's instantaneous quantities were 

mathematically defined. As shown in Figure 1, flame thickness was measured as the distance between 

the highest and lowest pixels of the smoothed image center. Flame surface area was calculated by 
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counting illuminated pixels (light intensity ≥20 units) and multiplying by their dimensions. Radiation 

intensity, representing the instantaneous heat release rate, was obtained by integrating pixel 

brightness at 430 nm, corresponding to CH* emissions. Flame displacement was determined along 

the central symmetry line using Equation (3), where 𝑦𝑖 is the pixel distance from the centre of the 

lower nozzle, Ii is the pixel radiation intensity at a wavelength of 430 nanometre, and YCoHR is the 

centre of the flame radiation area at that moment. The entire process was implemented and executed 

within an image processing code in MATLAB. 

 YCoHR= (∑ 𝑦𝑖𝐼𝑖) (∑ 𝐼𝑖)⁄  (3) 

To validate repeatability, the flame was tested three times at 40 Hz and 5 Pa. Figure 2 shows 

high-speed images across 4 frames for 4 cycles and the cycle-averaged image. The Abel inverse 

transformation [16] derived cross-sectional views, while quantitative results covered CH* intensity 

fluctuations (𝑄′/𝑄̅   ≈  𝐼𝐶𝐻
′ /𝐼𝐶̅𝐻), flame area, thickness, and heat release center displacement. Errors 

were below 0.4% for the mean flame surface position and CH* intensity, and below 1.6% for 

amplitude fluctuations over 100 cycles. 

 

t = 3T/4 

  

t = T/2 

t = T/4 

t = 0 

 Mean Cycle#4 Cycle#3 Cycle#2 Cycle#1   

Figure 2. CH* chemiluminescence images and Abel transformations (left) during acoustic excitation 

(f=40 Hz, P′=5 Pa) over four cycles and as a cycle average. The dashed line marks the stagnation plane. 

High-speed imaging post process results (right) shows Instantaneous YCoHR, thickness, area, and the heat re-

lease ratio.  

 

Previous studies on premixed flames have demonstrated a direct relationship between flame 

surface area and heat release rate 𝑄 ∝ 𝐴, with linear velocity fluctuations 𝑈′ 𝑈̅⁄ ≪ 1 showing 

𝑄′ 𝑄̅⁄ ~ 𝐴′ 𝐴̅⁄  [17]. Chemiluminescence measurements further confirmed a linear correlation between 

radiation intensity and flame surface area (𝐼𝐶̅𝐻 ∝ 𝐴̅), aligning with the observations in Figure 2 and 

validating the experimental findings. The repeatability of flame-acoustic interactions supports the 

development of a deep learning model to predict flame responses to acoustic excitation. Training the 

model across varied acoustic pressures and frequencies would enable the capture of complex nonlin-

ear interactions, enhancing real-time control and prediction of combustion dynamics for more reliable 

and efficient systems. 

4. Deep Learning Model 

Traditional signal processing methods fail to capture the complexity of flame dynamics. To 

address this, a hybrid deep learning model combining Transformer encoders [18]  for sequence mod-

eling and CNNs [19] for feature extraction was employed to analyze the flame transfer function and 

predict system responses to acoustic challenges. The framework (Figure 3) consists of two compo-

nents: a CNN block with four layers for extracting features from chemiluminescence data and a Trans-

former Encoder for advanced pattern analysis and forecasting. Early CNN layers capture basic inten-

sity changes, while deeper layers identify complex flame responses to acoustic inputs. Positional 



The 14th International Conference on Acoustics & Vibration (ISAV2024),  

Kharazmi University, Karaj, Iran, December 2024 

 

 

5 

encoding in the Transformer block preserves the temporal sequence of features, enabling the model 

to capture the flame's sequential response. The self-attention mechanism prioritizes critical input el-

ements for accurate predictions. The attention-weighted features are then processed through a feed-

forward network to generate predictions. 
 

 

 

Figure 3. Proposed deep learning model framework for FTF prediction (left) and training data from experi-

ments (right): input acoustic pressure (blue) and corresponding heat release response (red).  

4.1 Data Acquisition  

Acoustic oscillation frequency and amplitude significantly influence the Flame Transfer Func-

tion (FTF). Previous studies noted diminishing oscillation amplitudes near 100 Hz for ethylene flames 

[20] and structural insensitivity above 200 Hz for methane-air flames [21]. Accordingly, training data 

were selected from six frequency and amplitude ranges, as shown in Figure 3. The input pressure 

signal (blue line) and heat release reaction via OH* chemiluminescence (red line) were recorded. For 

constant-frequency tests (regions A, B, C), amplitudes increased by 1 Pa every two seconds until 

acoustic extinction, which restricted higher amplitudes  [22]–[26]. Region A was conducted at 30 Hz, 

region B at 60 Hz, and region C at 90 Hz. In variable-frequency tests (regions D, E, F), the frequency 

spanned 20–350 Hz with amplitudes fixed at 3 Pa, 5 Pa, and 7 Pa, respectively. Each test lasted two 

seconds, with data sampled at 3500 Hz for both input and output signals. 

5. Results and discussion 

The model was evaluated using test data with acoustic excitations excluded from training, ac-

curately predicting chemiluminescence signals and closely matching experimental results (Figure 4). 

For a 30 Hz sinusoidal input at 5 Pa (Figure 4, top), the model captured the mean value, amplitude, 

and phase with high precision, despite minor deviations due to experimental uncertainties and non-

linear flame-acoustic interactions. Triangular waveforms (Figure 4, middle) produced smoothed out-

puts, influenced by non-ideal exciter behavior and sensor dynamics. The model demonstrated satis-

factory predictive accuracy despite these limitations. Square waveforms (Figure 4, bottom) resulted 

in distorted outputs due to nonlinear flame dynamics and sensor-actuator constraints. The model ac-

curately predicted phase delay and mean heat release rate, with some variations in amplitude at signal 

extremums, closely aligning with experimental data. 
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Figure 4. Validation of the square (bottom), the triangle (middle) and the sinus (top) signals at a constant f = 

30 Hz and the pressure amplitude of 5 Pa. The black thin line: is the pressure input signal, the blue thick line: 

is the results predicted by CNNs + Transformer, and the red thick line: is the experimental results 

 

   

   

Figure 5. Gain (top) and phase (bottom) of the flame response function for the counterflow flame under var-

ying excitation pressure amplitudes of 3, 5, and 7 Pa. Red squares represent experimental data, while blue 

circles indicate predictions from the deep learning model. 
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The analyses so far focused on flame responses under constant pressure or frequency. To assess 

the model across varying conditions, the flame response function was examined at 3, 5, and 7 Pa over 

20–350 Hz. Figure 5 compares the experimentally obtained gain and phase with the deep learning 

model's predictions. At low frequencies (20 Hz), the flame's heat release oscillations match the order 

of input acoustic velocity (O(1)), similar to conical flames [27].  

The experimental results and the deep learning model exhibited consistent phase and gain 

across all tested frequencies and pressure amplitudes of the acoustic waves. Within the frequency 

range of 20 to 150 Hz, the flame response magnitude showed excellent agreement between the two 

methods, validating the model's ability to capture the flame's dynamic behavior. At frequencies ex-

ceeding 150 Hz, both the experimental flame response and the deep learning model prediction con-

verged toward zero. This behavior is notable, as uncertainties in experimental data at higher frequen-

cies, driven by increased sensitivity to environmental disturbances, challenge the model's ability to 

accurately capture the flame dynamics. To address this limitation, the training dataset for the deep 

learning model was optimized by reducing the sampling size at higher frequencies. This adjustment 

effectively minimized the influence of external disturbances, enhancing the model's predictive accu-

racy in this frequency range. The improved dataset refinement highlights the importance of adapting 

data preprocessing techniques to achieve robust predictions under varying experimental conditions. 

6. Conclusion 

This study developed a deep learning framework to predict the dynamic response of a partially 

premixed methane-air counterflow flame under acoustic excitation. Heat release rates were measured 

via OH* chemiluminescence across 20–350 Hz and pressure amplitudes up to extinction. A hybrid 

model combining convolutional neural networks (CNNs) for feature extraction and a Transformer 

Encoder for sequence forecasting was trained on experimental data, with flame structure repeatability 

confirmed through high-speed imaging. 

The model showed excellent agreement with experimental data, accurately predicting phase 

and gain across all frequencies and pressure amplitudes. For sinusoidal signals, it closely replicated 

experimental amplitude, phase, and mean heat release rates, while for triangular and square signals, 

minor amplitude discrepancies arose due to actuator and sensor limitations. Both experimental and 

model results exhibited low-pass filter behaviour, with heat release attenuated above 80 Hz and both 

approaching zero beyond 150 Hz due to experimental uncertainties. Optimizing the training dataset 

at higher frequencies improved the model's accuracy in capturing high-frequency dynamics. 

This framework offers a robust predictive tool for analysing flame response under varying 

acoustic conditions, providing insights for mitigating combustion instabilities. Future work should 

focus on enhancing data acquisition rates and refining training datasets to address high-frequency 

challenges, marking significant progress in applying deep learning to combustion dynamics. 
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